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Abstract

Standard Monte Carlo techniques were used to compute the potential of mean force between pairs and between triplets of freely jointed
hard-sphere polymers in dilute solutions. Segment—segment interactions at poor solvent conditions were represented by square-well
potentials. Well width equaled half a segment diameter and well depth was either zero or —0.30 kg7 Polymer chains contained 25 segments.

For polymer triplets at a set of selected two-body distances, the pair-wise additivity of the potential of mean force provides a reasonable
approximation for the three-body potential of mean force. At athermal conditions, the error introduced by assuming additivity is generally
less than 10—15% of the total three-body interaction, while for well depth —0.30 kg7, the error rises, but is still generally less than 20—-30%.
Deviations from the calculated three-body potential of mean force are a function of solvent conditions and of relative positions of the
interacting polymers. For polymer chains containing 15, 25 or 30 segments, simulation results do not depend significantly on polymer length.
© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In typical molecular-thermodynamic calculations it is
common practice to assume that the three-body potential
is given by the sum of the two body potentials:

@ _r® 1o, ro
F123 - r12 + F13 + F23 (1)

where I'3; is the potential of three particles denoted by
subscripts 1, 2 and 3. When generalized to any number of
multi-body potentials, Eq. (1) expresses the pair-wise addi-
tivity assumption; it provides an approximation that is often
adopted in statistical mechanics of simple fluids [1,2]. For
three interacting particles, Eq. (1) introduces a relatively
small uncertainty when applied to monatomic or simple
fluids [3—7]. Triple-dipole interactions contribute between
two to nine percent of the cohesive energy of the crystals of
rare gases [8]. Upon considering the effect of three-body
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interactions, it is possible to improve the prediction of
density of the liquid branch in vapor—liquid phase equilibria
for argon [9].

Little is known about uncertainties in applying the pair-
wise additivity assumption to potentials of mean force, i.e.
to systems where the interacting molecules are not in
vacuum but in a solvent. For a three-body potential of
mean force, W%, the additivity assumption is:

3 — w® 4+ w2 4 wo.
W123 - W12 + W13 + W23 > (2)

where superscripts 1, 2 and 3 denote the interacting
particles. Because the radial distribution function, g, is
directly related to the potential of mean force [1,10], %2),
according to

—_w®
gij:exp( i ) 3)

Eq. (2) is equivalent to Kirkwood’s superposition approx-
imation of pair distribution functions [11]. When this
approximation is generalized to any number of multi-body
potentials, calculations of fluid properties ignore the contri-
butions of three- and higher many-body interactions. For
two-dimensional simple fluids, the superposition approxi-
mation introduces an uncertainty of only a few percent
when compared to molecular-simulation results [12].
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Some empirical corrections have been proposed to improve
predictions for Lennard-Jones fluids [13], or for hard-sphere
fluids [14]. Triple-dipole interactions increase the
density difference between two equilibrium liquid phases
for binary mixtures of Lennard-Jones atoms [15], and by
including three-body interactions, better prediction was
obtained for phase behavior of highly polar multicomponent
liquid mixtures [16]. The three-body term is also important
in systems containing ionic micelles or globular proteins
with long-ranged double-layer interactions [17].

In phase-equilibrium calculations for polymer solutions,
e.g. Refs. [18-20], additional caution is required. In this
case, potentials of mean force are not only solvent-averaged
McMillan—Mayer potentials between individual polymer
segments [21], but, in addition, they are integrals over
the conformations of the polymers. In practical calculations,
the possible error introduced by assuming pair-wise
additivity can sometimes be overcome by adjusting model
parameters. To improve fundamental calculations of
polymer-solution properties, it will be useful to have some
estimate of the error introduced by the pair-wise additivity
assumption.

This work is concerned with the pair-wise additivity of
conformational averages for the potential of mean force
between macromolecules in dilute solutions. Toward that
end, the calculations performed here are within the
McMillan—Mayer framework for segments with pair-wise
additivity for the solvent-averaged potential of mean force
between segments.

2. Model and simulation details

The polymer is represented by a chain of 25 freely jointed
hard spheres. Time-consuming calculations of the three-
body potential of mean force preclude calculations for
significantly longer chains. Fortunately, preliminary simu-
lations for chains with 15 and 30 segments do not show
appreciable differences from the simulations obtained for
25-segment chain.

Two different scenarios were considered: purely self-
avoiding chains with no attraction between the hard-sphere
segments, and chains with weak attraction between non-
bonded segments. In the latter case, the attraction was repre-
sented by a square-well potential with well width equal to
one half of the segment diameter o, well depth €, was set to
—0.30 kgT. The segment—segment square-well potential, ¢,
as a function of the center-to-center segment-segment
distance, d, is represented by:

$(d) = {m

e o=d=150

d<o
4

Both intra- and inter-segment interactions were considered
for non-bonded polymer segments. For a square-well chain
with given well width, the theta condition corresponds to a
well-depth equal to —0.32 kg7 [22]. Computer-simulations

show that, for linear chains with segments interacting with
the given square-well potential, the coil size scales as
random walk, and the second osmotic virial coefficient
equals zero [22]. Therefore, our calculations correspond to
dilute polymer solutions spanning good solvent conditions
from athermal (hard-core with no attraction) to near-theta
conditions. Because solvent molecules were not considered
explicitly, our segment—segment potentials correspond to
solvent-averaged potentials of mean force.

Standard Monte Carlo techniques were used to compute
the potential of mean force between pairs or triplets of
polymers. Isolated conformations of the linear polymer
were generated with the Pivot algorithm [23,24]. The simu-
lation was initiated with a fully stretched chain that was
allowed to equilibrate within 1,500,000 moves. In the
production run, one out of every few thousand successive
configurations was recorded and used to compute the radius
of gyration and the potential of mean force. Equilibration
was verified by repeating the calculations at least three
times. Table 1 shows radii of gyration for the chains consid-
ered here. To compute the potential of mean force between
polymer pairs, we adopted the algorithm proposed by Hall
and coworkers [22,25]. The pair potential of mean force,
W(2)(r), as a function of the separation between the centers
of mass of the polymers, r, is obtained by:

My ”
UP(r)
W) ;
= —In , ©)
kgT Mp

where Mp is the total number of polymer pairs used at each
distance and U,-(z)(r) is the statistical weight of each pair at
given separation and configuration. This quantity is
obtained by:

UP(r) = exp (= D (r)/kyT) ©

where @;2)(}") is the potential between two polymer mole-
cules for a particular configuration:

DP =" P(dy) )

k=1 I=1

The subscript i specifies a particular interacting polymer
pair. The summation is over all segment pairs, and dj; is

Table 1

Reduced sample-average radii of gyration squared, (Rg), computed for
linear polymers at different well depth. The reducing factor is o?, where
o is the diameter of a polymer segment

Number of segments Well depth, kgT (Ré)/(r2

15 0 475+ 04
15 —0.30 4.1x0.3
25 0 10.0 = 0.5
25 —0.30 7.6 £0.3
30 0 12.1 £ 0.7
30 —0.30 9.3*=0.3
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Fig. 1. Pair-potential of mean force as a function of the distance between centers of mass of the polymers for 25-segment chains. Diamonds are for athermal
conditions, squares for well depth —0.30 kg7 Symbols are larger than statistical uncertainties.

the center-to-center distance of segment k belonging to the
first polymer chain, to segment [ of the second chain. This
potential diverges if at least two segments belonging to
interacting polymers overlap. If there are no overlaps, the
total potential equals the number of segment pairs belonging
to the two interacting polymers separated by less than 1.5
times the segment diameter o, multiplied by the well depth.
One thousand different conformations of the polymer were
used to sample a total of one million polymer pairs at each
separation r.

The algorithm has been generalized to compute the
potential of mean force for triplets. The three-body potential
of mean force, W(3), is obtained by:

Mr
U (rap. raes rac)
3 Z i AB>"BC>"AC
W' )(rABvrBCvrAC) g =l
=—In , (®)

kyT My

where M is the total number of polymer triplets tested, rag,
rgo, Fac the distances between the centers of mass of the
polymers A and B, B and C, A and C, respectively; and Ui(3)
is the statistical weight of each triplet. Analogous to Eq. (2),
the statistical weight of a polymer triplet i is given by:

U (raps rocs ac) = exp (— P /kpT), )
where
D = PR (rap) + PR(rpc) + PiA(rac) (10)

To investigate the effect of the relative positions of different
polymer chains on the three-body interaction, the three
molecules were displaced in space to form different trian-
gles. The center of mass of the first molecule, A, is placed at
the origin and the second, B, at a fixed distance. The third
molecule, C, is placed consecutively in four different posi-
tions such that the distance rpc always equals rgc. The four

Table 2
Three-body potential of mean force, W, for linear polymer chains, 25
segments each, at athermal conditions

raglo (rac = rgo)lo w®, kgT

0.94 0.47 9.1 0.2
1.88 0.94 84+02
2.35 1.18 7.9 +0.15
3.13 1.57 6.95 = 0.15
3.76 1.88 6.14 = 0.05
4.23 2.12 5.5*0.1
4.70 2.35 4.87 +0.05
5.64 2.82 3.7+0.1
6.58 3.29 2.8 0.1
7.52 3.76 2.05+0.1
0.94 0.66 9.0£0.2
1.88 1.33 8.10 = 0.15
2.35 1.66 7.45 = 0.1
3.13 2.22 6.25 0.1
3.76 2.66 5.19 = 0.05
4.23 2.99 440 0.1
4.70 3.32 3.65 £ 0.05
5.64 3.99 235*0.1
6.58 4.65 145+ 0.1
0.94 0.94 8.8 +0.2
1.88 1.88 7.5%0.1
2.35 2.35 6.6 = 0.1
3.13 3.13 4.92 +0.05
3.76 3.76 3.55+0.05
4.23 4.23 2.65 0.1
4.70 4.70 1.97 £ 0.05
5.64 5.64 0.95 = 0.1
6.58 6.58 0.45 +=0.05
0.94 1.94 7.84 = 0.15
1.88 3.88 4.81 = 0.05
2.35 4.84 3.50 £ 0.05
3.13 6.46 1.99 + 0.05
3.76 7.75 1.25 +0.05
4.23 8.72 0.89 = 0.05
4.70 9.69 0.64 = 0.05
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Table 3
Three-body potential of mean force, W, for linear polymer chains, 25
segments each, at well depth —0.30 kg7

raplo (rac = rpo)lo WS, kT
0.76 0.38 5.05 = 0.25
1.52 0.76 470 = 0.25
228 1.14 4.05 = 0.20
3.04 1.52 3.35+0.15
4.56 2.28 1.78 + 0.05
0.76 0.54 5.00 + 0.25
1.52 1.07 470 +0.15
2.28 1.61 3.70 £ 0.10
3.04 2.15 2.65 +0.10
4.56 3.22 0.92 = 0.02
0.76 0.76 5.10 £ 0.25
1.52 1.52 4.35+0.20
2.28 2.28 295 +0.15
3.04 3.04 1.60 = 0.05
456 456 0.180 = 0.005
0.76 1.57 4.55 +0.20
1.52 3.13 242 +0.10
2.28 4.70 1.05 = 0.05
3.04 6.27 0.44 + 0.02

positions [3] of the center of mass of the polymer C are such
that in the first configuration, ryc = 0.5-r,p; in the second,
rac = (v/2/2)-rxp. in the third, roc = rap; and in the fourth,
rac = (V17/2)-rpp. At every distance rap, the three-body
potential of mean force is computed for each of the four
spatial arrangements. These arrangements are shown in
Fig. 6, Appendix A.

3. Results and discussion

Fig. 1 shows the pair potential of mean force as a function
of the center-to-center distance computed for 25-segment
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chains. Diamonds represent results for athermal chains
(e = 0), while squares represent results for e = —0.30 kgT.
The distance r is normalized by the radius of gyration of the
polymer. For the polymer pair at athermal conditions, the
potential of mean force is positive at all separations. At
€ = —0.30 kgT the potential of mean force is generally
less repulsive, and becomes weakly attractive at distances
of about 2.5 times the radius of gyration.

The triplet potential of mean force, W@, was computed at
different separations between chains A, B and C. Table 2
gives calculated triplet potentials of mean force obtained for
25-segment athermal chains at different center-to-center
distances. Table 3 shows the triplet potential of mean
force obtained for 25-segment chains at different center-
to-center separations for € = —0.30 kg7. The ‘excess’
potential of mean force, AW, was computed from:

3 3 2
AW (rag, 50 Fac) = W (rap, racs rac) — [WP(rap)

+ W (rge) + WP (ra0)l.
(11)

Fig. 2 shows the excess potential of mean force as a function
of reduced composite distance between polymers, 7/, at
athermal conditions. The reduced composite distance is
defined as:

(1/3)
I _ (ra'rBCTAC)

G (2

r

For the 25-segment chains, Fig. 2b—d show similar beha-
vior: the excess three-body potential is repulsive at high
separations, while it is weakly attractive at composite
distances lower than the radius of gyration of the interacting
polymers. Fig. 2a, however, shows that the excess potential
remains negative at all separations. The weak attraction is
attributed to several effects: the excluded volume of two
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Fig. 2. Excess potential of mean force as a function of reduced composite distance between polymers. Results are for athermal conditions: (a) is for ryc = 0.5
raps (b) is for rac = 0.7071 rap; (c) is for rac = rap and (d) is for roc = 2.0616 rpp. Diamonds are for 25-segment chains, squares for 15-segment chains, and
triangles for 30-segment chains. Only some representative error bars are shown.
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Fig. 3. Percentage of the excess potential of mean force relative to the three-body potential as a function of the reduced composite distance between polymers.
Results are for athermal conditions: (a) is for rac = 0.5 rap; (b) is for ryc = 0.7071 rap; (¢) is for rac = rap and (d) is for ryc =2.0616 rpg. Results are for

athermal conditions. For clarity, error bars are omitted.

interpenetrating chains experienced by the third molecule
generally lies below the sum of contributions from two
independent chains, and available space is increased due
to orientational correlations between the molecules. This
situation is, however, reversed at composite separations
exceeding the radius of gyration of isolated chains because
polymer interpenetration leads to a moderate increase in the
radius of gyration of adjacent chains. Due to excluded
volume effects, an excess repulsion rises. The dependence
of AW® on triplet geometry is due to changes in the shield-
ing of interactions between molecules A and B by molecule
C; this shielding is most pronounced in the configuration
shown in Fig. 2a where the third molecule (C) is placed
between A and B. Results obtained for 15- and 30-segment
chains agree with these observations, within statistical

Fig. 3 shows the excess potential of mean force as a
percentage of the three-body potential of mean force, W,
at different reduced composite distances at athermal condi-
tions. In most cases in athermal dilute polymer solutions, the
error introduced by Eq. (2) is less than 10—15% of the three-
body potential. Therefore, pair-wise additivity of potentials
of mean force provides a reasonable approximation at these
conditions. Fig. 3a suggests that upon increasing the
reduced composite distance, the absolute value of the
percent error introduced by Eq. (2) also increases. However,
at reduced composite distances larger than 1.20, for ather-
mal dilute polymer solutions, the three-body potential of
mean force, WG), is small and the error is not significant.

Fig. 4 shows the excess potential of mean force as a
function of reduced composite distance between weakly

uncertainty. attractive polymers at € = —0.30 kg7. When there is a net
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Fig. 4. Excess potential of mean force as a function of the reduced composite distance between polymers. Results are for theta conditions: (a) is for ryc = 0.5
rag; (b) is for rac = 0.7071 rp; (c) is for rac = rap and (d) is for roc = 2.0616 rpp. Diamonds are for 25-segment chains, squares for 15-segment chains, and
triangles for 30-segment chains. Only some representative error bars are shown.
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Fig. 5. Percentage of the excess potential of mean force relative to the three-body potential as a function of the reduced composite distance between polymers
at theta conditions. (a) is for rac = 0.5 rap; (b) is for rac = 0.7071 rap; (c) is for rac = rap and (d) is for roc = 2.0616 rp. Diamonds are for 25-segment chains,
squares for 15-segment chains, and triangles for 30-segment chains. For clarity, error bars are omitted.

attraction between non-bonded polymer segments, we
expect a positive excess three-body potential of mean
force because attracting segments from distinct chains
compete for favorable interactions. Upon addition of the
third polymer, a fraction of contacts between segments
belonging to the other two macromolecules is replaced by
contacts with segments from the third. Further, when two
polymer chains, A and B, are close to each other, their
conformations differ from the conformations of non-inter-
acting polymers. Segments of different chains are attracted
by each other, and the segment density in the region
between the centers of mass of the two chains exceeds the
sum of densities of two uncorrelated chains. Therefore, the
volume available to segments of the third polymer chain, C,
is smaller than expected, producing a net three-body repul-
sion. All our results agree with this phenomenological
explanation.

Fig. 5 shows the excess potential of mean force as a
percentage of the three-body potential of mean force at
different reduced composite distances for € = —0.30 kgT.
The error introduced by Eq. (2) is typically less than twenty
percent of the total interaction. The percent error is higher
for e = —0.30 kg7 than that for athermal conditions. Fig. 5b
and c suggest that upon increasing the reduced composite
distance, the relative error introduced by Eq. (2) rises.
However, at reduced composite distances larger than 1.20,
w® is small, and the error is not significant.

4. Conclusions

The pair-wise additivity assumption for a three-body
potential of mean force provides a reasonable approxima-
tion in dilute polymer solutions at good-solvent conditions.

At athermal conditions, the error introduced by the addi-

tivity approximation is generally below 10-15% of the
three-body potential of mean force. At small separations,
the excess three-body potential of mean force is negative
indicating an excess three-body attraction between polymer
triplets at small separations. However, due to swelling of
interpenetrating chains beyond the radius of gyration of
isolated polymer molecules, the excess three-body potential
of mean force can be positive at higher separations depend-
ing on the relative positions of the three interacting polymer
chains.

At well depth —0.30 kg7, the excess three-body
potential of mean force is always positive, showing an
excess repulsion between polymer triplets. At these solvent
conditions, the excess three-body potential of mean force
is less than 20-30% of the three-body potential of mean
force.

Results obtained with polymers of 15 and 30 segments
indicate that our calculations do not change with polymer
length.
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Appendix A (Figure 6)
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Fig. 6. Trial arrangements considered in calculation of conformational
averages for three-body interactions. In the figure, the points represent
the position of the centre of mass of each polymer coil. The centre of
mass of the first molecule, A, is placed at the origin and the second, B, at
a fixed distance. The third molecule, C, is placed consecutively in four
different positions. In the first configuration, C’, ¢ = 0.5-755; in the
second, C”, rac = (v/2/2)-rap; in the third, C”, rac = rag; and in the
fourth, C", rac = (V17/2)-rsp.
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